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Carbon Capture and Storage (CCS)

Cco,
injection
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CO, source
(eg. power plant)

(From IPCC Special Report on CO, Capture and Storage)
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Renewables Need Energy Storage

Figure 2: Timescales of natural cycles of renewable energies
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http://lweb.ead.anl.gov/saltcaverns/overview/index.htm
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State of the Art i

» Today there are two CAES plants world-wide.

* Huntorf, Germany (290 MW, in operation for 30 yrs)
* Two solution-mined salt caverns
*» 48-66 bar, for black start of nearby nuclear plant

* Mcintosh, Alabama (110 MW, in operation for 20 yrs)
* Solution-mined salt cavern
* 45-74 bar, supply for network of coal plants

Compressed air locomotive
operated at the Homestake
mine from 1928-1961.
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Recover Heat of Compression

Figure 1. Schematic arvangement of the main elements of an Adiabatic CAES plant

(From Bullough et al., 2004)
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Advancing the State of the Art

Neither of the existing plants has anything to do with
renewables.

Both are in caverns.
Cavern volumes are limited.

Aquifers and depleted-reservoirs are available for CAES,
but have not been used to date.

An analogue of CAES is natural gas storage which is
done in aquifers and depleted reservoirs.
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Cushion and Working Gas

* Production of air from the reservoir relies on presence of a
cushion gas (gas that is not produced, but whose pressurization
drives working gas out of reservoir).

Compressed Air
sand

Air /" Air
work1:‘11.g# ——.working cushion
gas
gas £as sand

Oldenburg, C.M., Energy&Fuels, 17(1), 240-246, 2003.

DT,
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Enhancement of CAES Using CO,

* CO, around its critical pressure behaves like a super-cushion
Oldenburg, C.M., Energy&Fuels, 17(1), 240-246, 2003.
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Advancing the State of the Art

» Alternative cushion gas has been used in natural gas
storage (specifically, N,).

* Use of non-air cushion gas for CAES is novel.

CO2 as Cushion Gas for CAES
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CAES in Aquifers or Depleted Reservoirs
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Aquifers # Caverns Pl

* Pore space (porosity)
* Permeability

* Two-phase flow
— Capillary forces (wetting phase, non-wetting phase)
— Relative permeability

2md pam cumed comignan S Powr Sindl Basin

Source: John Beyer (LBNL)

Source: Leetaru et al. http://knoxstp.com/reservoir.htm
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P..,, and k., Curves
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Simulation of Aquifer-CAES
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Wellbore: diameter 0.5334 m (217);

length 675 m (650 m in depth + 25 into aquifer);
Aquifer: thickness 50 m and radii 10 km
Numerical grid: axisymmetric 1840 cells
650 m Boundary conditions: constant pressure and temperature
at the cells 9085 m away from wellbore;
Simulation: TOUGH2 with Drift-Flux Model = T2Well

closed !
well M
H water

50 m N
closed T

10 km

anjejsolpAy

1 km
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¢ TOUGH: Transport Of Unsaturated Groundwater and Heat

multidimensional § 1D, 2D, 3D
multiphase g liquid, gas, NAPL
multicomponent § water, air, VOC, radionuclides
nonisothermal §§ heat
flow and transport §§ multiphase Darcy law
fractured-porous media j§ dual-¢, dual-k, MINC, ECM

EOS: Accurate description of thermophysical properties

http://esd.lbl.gov/ITOUGH2/
http://esdtools.lbl.gov/gaseos/
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Time = 360 (8640) hours (minutes)

Note:

« 30 times as much
air in the bubble
compared to
working gas

* Two-phase zone

* Bubble evolves
(flattens) over

-304 time.
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Pressure (Pa)

................................... g Production/Recharge cycles

Gas Saturation

Temperature (°C)

Time = 0 (7) hours (minutes)
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Time = 0 (7) hours (minutes)
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Pressure (during production & recharge cycles)
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12 hrs Recharge at 54 kg/s
Recharge surplus per cycle 8.1e4 kg

CO2 as Cushion Gas for CAES
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Energy Flows (during production & recharge cycles)
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Preliminary Simulation of i
Gas-Reservoir CAES with
CO, as Cushion Gas

Agquifer: thickness 50 m and radius 725 m

Numerical grid: axisymmetric 1449 cells

Boundary conditions: constant pressure and temperature
at the down-dip water leg boundary.

Wellbore: diameter 0.5334 m (21");
length 675 m (650 m in depth + 30 m into aquifer)
(not vet implemented);
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Details of Gas-Reservoir CAES Simulation

Simulation: TOUGH2

Injection: Into the top 30 gridblocks on the LHS

Initial fill of CO,: 21.7 kg/s for 180 days (total of 0.7 Mt CO2)
Inject air buffer: 12 hours at 54 kg/s

Inject air working gas: 6 hours at 810 kg/s

Inject air working gas: 12 hours at 540 kg/s

Production of air working gas: 6 hours at 104.25 kg/s
Recharge: 12 hours at 540 kg/s

Initial condition: hydrostatic pressure and uniform temperature
Boundary conditions: constant pressure and temperature at down-dip edge of
structure; wellhead is prescribed injection (air) rate with enthalpy
of 0.13005E+06 J/kg or production (mass) rate.

Schedule:

TBD *Pan, L., C.M. Oldenburg, Y.-S. Wu, and K.
Pruess, Wellbore flow model for carbon dioxide
and brine, Energy Procedia, GHGT9 conference,
Nov. 16-20, 2008, Washington DC. LBNL-1416E.
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Density Evolution

After small injection of buffer air (54 kg/s)
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After 6 hrs of injection at 810 kg/s
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Conclusions

Climate change motivates CCS and increased use of

renewables.

Renewables need energy storage (e.g., CAES) to meet

baseload requirements.

CCS can potentially be coupled with CAES.

Price on carbon would subsidize CAES project.

CAES could benefit by super-cushion properties of CO,.
We are evaluating the benefits and risks of using CO, as

a cushion gas.
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