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Options Available

http://www.princeton.edu/~cmi/resources/stabwedge.htm 3

Carbon Capture and Storage (CCS)

(From IPCC Special Report on CO2 Capture and Storage)
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Renewables Need Energy Storage

Source:  Samir Succar, IAC Workshop, October 2005.

Source: International Energy 
Agency (IEA), Variability of 
wind power and other 
renewables: Management 
options and strategies, IEA 
Publications, June 2005.

Diabatic Cavern CAES Schematic

http://web.ead.anl.gov/saltcaverns/overview/index.htm
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State of the Art
• Today there are two CAES plants world-wide.

• Huntorf, Germany (290 MW, in operation for 30 yrs)
• Two solution-mined salt caverns
• 48-66 bar, for black start of nearby nuclear plant

• McIntosh, Alabama (110 MW, in operation for 20 yrs)
• Solution-mined salt cavern
• 45-74 bar, supply for network of coal plants

Compressed air locomotive 
operated at the Homestake
mine from 1928-1961.

Recover Heat of Compression

(From Bullough et al., 2004)
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Advancing the State of the Art

• Neither of the existing plants has anything to do with 
renewables.

• Both are in caverns.
• Cavern volumes are limited. 
• Aquifers and depleted-reservoirs are available for CAES, 

but have not been used to date.
• An analogue of CAES is natural gas storage which is 

done in aquifers and depleted reservoirs. 
• Alternative cushion gas has been used in natural gas 

storage (specifically, N2).
• Use of non-air cushion gas for CAES is novel.

Cushion and Working Gas
• Production of air from the reservoir relies on presence of a 
cushion gas (gas that is not produced, but whose pressurization 
drives working gas out of reservoir).

Air Air

Compressed Air

Oldenburg, C.M., Energy&Fuels, 17(1), 240–246, 2003.
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Enhancement of CAES Using CO2

• CO2 around its critical pressure behaves like a super-cushion
Oldenburg, C.M., Energy&Fuels, 17(1), 240–246, 2003.

Source: The Australian Cooperative Research Centre for Greenhouse 
Gas Technologies (CO2CRC) 
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CAES in Aquifers or Depleted Reservoirs

http://www.isepa.com/about_isep.asp

Aquifers ≠ Caverns
• Pore space (porosity)
• Permeability
• Two-phase flow

– Capillary forces (wetting phase, non-wetting phase)
– Relative permeability

Source: John Beyer (LBNL)
Source: Leetaru et al. http://knoxstp.com/reservoir.htm
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Pcap and krel Curves

Source: Christine Doughty (LBNL)

Simulation of Aquifer-CAES

Wellbore: diameter 0.5334 m (21”); 
length 675 m (650 m in depth + 25 into aquifer);

Aquifer: thickness 50 m and radii 10 km 
Numerical grid: axisymmetric 1840 cells 
Boundary conditions: constant pressure and temperature 
at the cells 9085 m away from wellbore;
Simulation:  TOUGH2 with Drift-Flux Model = T2Well
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The TOUGH Codes
• TOUGH: Transport Of Unsaturated Groundwater and Heat

multidimensionalmultidimensional
multiphasemultiphase

multicomponentmulticomponent
nonisothermalnonisothermal

flow and transportflow and transport
fracturedfractured--porous mediaporous media

1D, 2D, 3D1D, 2D, 3D
liquid, gas, NAPLliquid, gas, NAPL
water, air, VOC, radionuclideswater, air, VOC, radionuclides
heatheat
multiphase Darcy lawmultiphase Darcy law
dualdual--φφ, dual, dual--k, MINC, ECMk, MINC, ECM

EOS: Accurate description of thermophysical properties

http://esd.lbl.gov/TOUGH2/
http://esdtools.lbl.gov/gaseos/

Note:
• 30 times as much 

air in the bubble 
compared to 
working gas

• Two-phase zone
• Bubble evolves 

(flattens) over 
time.
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Pressure (during production & recharge cycles) 

Working mass 1/30
3 hrs Production at 208.5 kg/s
12 hrs Recharge at 54 kg/s
Recharge surplus per cycle 8.1e4 kg
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Close‐up view of two cycles 

Energy Flows (during production & recharge cycles) 
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Close‐up view of two cycles 

Preliminary Simulation of 
Gas-Reservoir CAES with 

CO2 as Cushion Gas
Aquifer: thickness 50 m and radius 725 m 
Numerical grid: axisymmetric 1449 cells 
Boundary conditions: constant pressure and temperature 

at the down-dip water leg boundary.
Wellbore: diameter 0.5334 m (21”); 

length 675 m (650 m in depth + 30 m into aquifer) 
(not yet implemented);



Oldenburg and Pan

CO2 as Cushion Gas for CAES 14

Details of Gas-Reservoir CAES Simulation
Simulation:  TOUGH2 with Drift-Flux Model for wellbore flow = T2Well*
Injection:  Into the top 30 gridblocks on the LHS
Initial fill of CO2: 21.7 kg/s for 180 days (total of 0.7 Mt CO2)
Inject air buffer: 12 hours at 54 kg/s
Inject air working gas: 6 hours at 810 kg/s
Inject air working gas: 12 hours at 540 kg/s
Production of air working gas: 6 hours at 104.25 kg/s 
Recharge: 12 hours at 540 kg/s
Initial condition: hydrostatic pressure and uniform temperature
Boundary conditions: constant pressure and temperature at down-dip edge of 
structure; wellhead is prescribed injection (air) rate with enthalpy
of 0.13005E+06 J/kg or production (mass) rate.  

Schedule:
TBD *Pan, L., C.M. Oldenburg, Y.-S. Wu, and K. 

Pruess, Wellbore flow model for carbon dioxide 
and brine, Energy Procedia, GHGT9 conference, 
Nov. 16-20, 2008, Washington DC. LBNL-1416E.

Initial Fill with CO2 (CH4 Recovery)
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After Injecting Buffer Air (54 kg/s)

After 6 hrs of Air Injection at 810 kg/s
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After 12 hrs of Air Injection at 540 kg/s

After 6 hrs Production at 104.2 kg/s
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Density Evolution
After small injection of buffer air (54 kg/s) After 6 hrs of injection at 810 kg/s

After 12 hrs of injection at 540 kg/s After 6 hrs of production at 104 kg/s

Conclusions
• Climate change motivates CCS and increased use of 

renewables.
• Renewables need energy storage (e.g., CAES) to meet 

baseload requirements.
• CCS can potentially be coupled with CAES.
• Price on carbon would subsidize CAES project.
• CAES could benefit by super-cushion properties of CO2. 
• We are evaluating the benefits and risks of using CO2 as 

a cushion gas.
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